Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1

نویسندگان

  • Liufeng Zheng
  • Wei Zhang
  • Yuanfei Zhou
  • Fengna Li
  • Hongkui Wei
  • Jian Peng
چکیده

The mammalian target of rapamycin (mTOR) is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs), especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1)-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9) and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1) also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR) T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of amino acid transporters in amino acid sensing.

Amino acid (AA) transporters may act as sensors, as well as carriers, of tissue nutrient supplies. This review considers recent advances in our understanding of the AA-sensing functions of AA transporters in both epithelial and nonepithelial cells. These transporters mediate AA exchanges between extracellular and intracellular fluid compartments, delivering substrates to intracellular AA sensor...

متن کامل

The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1.

The mechanistic target of rapamycin complex 1 (mTORC1) kinase is a major regulator of cell growth that responds to numerous environmental cues. A key input is amino acids, which act through the heterodimeric Rag GTPases (RagA or RagB bound to RagC or RagD) in order to promote the translocation of mTORC1 to the lysosomal surface, its site of activation. GATOR2 is a complex of unknown function th...

متن کامل

CASTORing New Light on Amino Acid Sensing

The activation state of mTORC1, a master regulator of cell growth, is particularly sensitive to changes in the intracellular levels of the amino acid arginine, but the sensing mechanisms are poorly understood. In this issue of Cell, Chantranupong et al. identify CASTOR1 as a direct arginine sensor that acts through the GATOR2 complex to regulate mTORC1.

متن کامل

Mechanisms of amino acid sensing in mTOR signaling pathway

Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dys...

متن کامل

Amino acids and mTOR signalling in anabolic function.

Amino acids regulate signalling through the mTORC1 (mammalian target of rapamycin, complex 1) and thereby control a number of components of the translational machinery, including initiation and elongation factors. mTORC1 also positively regulates other anabolic processes, in particular ribosome biogenesis. The most effective single amino acid is leucine. A key issue is how intracellular amino a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016